Warning: Trying to access array offset on value of type null in /home/vasista/public_html/wp-content/plugins/ed-school-plugin/vc-addons/logo/addon.php on line 122
logo
Start VASISTA
Schools

Implemented our Programs

Our Centers

Learn near to Your Place

Workshop

Trained 10K+ Students

Earn up to 25000 Per Month...

Know More about the Program

[gravityform id=”13″ title=”false” description=”false” ajax=”false”]

Be a Vedic Maths Teacher

Vedic Mathematics is a blessing to everybody in this day and age when people’s numerical skills are deteriorating as the use of calculators is increasingly commencing at a younger age. Vedic Mathematics’ shorter, quicker and easy to remember techniques enable any student to do calculations faster than they would with conventional methods. Students of Vedic Mathematics dispel their fear of mathematics and gain a new-found confidence to work on any mathematical problem without apprehension.

Top Reasons to become Teacher Partner

Earn High Profit Margins

You get to be your own Boss!

Scale up fast !

Focus only on business growth

Take Advantage Being First

Take Advantage Being First

Best School Integrated Programs

Warning: Attempt to read property "post_title" on null in /home/vasista/public_html/wp-content/plugins/js_composer/include/helpers/helpers.php on line 60

Warning: Trying to access array offset on value of type null in /home/vasista/public_html/wp-content/plugins/ed-school-plugin/vc-addons/video-popup/addon.php on line 225

Warning: Attempt to read property "post_title" on null in /home/vasista/public_html/wp-content/plugins/js_composer/include/helpers/helpers.php on line 60

Warning: Trying to access array offset on value of type null in /home/vasista/public_html/wp-content/plugins/ed-school-plugin/vc-addons/video-popup/addon.php on line 225

Originally born in the vedic age.

Rediscovered from Ancient Scripts between 1911 and 1918

By Sri Bharati Krishna Thirthaji (1884 – 1960).

It is based on Sixteen Sutras and Upasutras

It is a super fast way of calculation.

It is a mental tool for calculations.

Encourages the development and use of intuition and innovation.

Gives the student a lot of flexibility, fun an satisfaction.

Highly beneficial for students who are appearing competitive exams.

Innovative Ancient Concept

We are living in the age of tremendous amount of competitions and Vedic Mathematics methods come to us as a boon for all the competitions. Present maths,a scary subject requires higher amount of effort in learning. Maths can be learnt and mastered with minimum efforts in a very short span of time and can be translated into a playful and a blissful subject with the help of Vedic Maths

Currently the world is going through a crisis in Mathematics Education. Numeracy levels of various countries have gone down and there are not many solutions in sight. We were going through the recent ASER 2014 Report released by the NGO Pratham and was aghast looking at the state of Maths Education in the country. According to the report in 2014 only 26.3% of std III children could do a two digit subtraction. Only 26.1% of children in Std V could do division. And in 2014 only 44.1% in std VIII could do a three digit by one digit division problem.

It is a global maths crisis we are witnessing today. Our children aren’t getting any better with maths and clearly the methods which we have in maths have failed. They hate maths so much so that failing in it has become a fashion statement – something to be proud about. In this backdrop of a global maths crisis, any solution which makes math simple and easy definitely calls the attention of students and teachers alike. Everybody wants a solution to make maths fun. This is where many solutions fit in like the Vedic Maths.

Vedic Maths is one such solution to the students for making Maths simple and easy. They get better at school, understand concepts and even apply the vedic maths rules to competitive examinations like the SAT, Common Admission Test (CAT) or GMAT.

  • Indian Mathematics
  • Vedic Mathematics
  • Sixteen Sutras And Upa Sutras
  • Place Value
  • Squares – Numbers Consists All Digit Of 1
  • Squares – Numbers Consists All Digit Of 2
  • Squares – Numbers Consists All Digit Of 3
  • Squares – Numbers Consists All Digit Of 6
  • Squares – Numbers Consists All Digit Of 9
  • Squares – Numbers Consists Unit Digit 1 & Rest Of All Digits 9
  • Squares – Numbers Consists Unit Digit 2 & Rest Of All Digits 9
  • Squares – Numbers Consists Unit Digit 3 & Rest Of All Digits 9
  • Squares – Numbers Consists Unit Digit 4 & Rest Of All Digits 9
  • Squares – Numbers Consists Unit Digit 5 & Rest Of All Digits 9
  • Squares – Numbers Consists Unit Digit 6 & Rest Of All Digits 9
  • Squares – Numbers Consists Unit Digit 7 & Rest Of All Digits 9
  • Squares – Numbers Consists Unit Digit 8 & Rest Of All Digits 9
  • Multiplying By 2
  • Multiplying By 5
  • Multiplying By 6
  • Multiplying By 7
  • Multiplying By 8
  • Multiplying By 9
  • Multiplying By 11
  • Multiplying By 12
  • Multiplying By 25
  • Multiplying By 75
  • Teen Number Multiplication
  • Multiplication Two Digits – Line Method
  • Multiplication Any Two Digit Number
  • Multiplying 2 Numbers With The Same Ten’s Digit
  • Multiplying Two Numbers That End In 5
  • Multiplying By Numbers Ending In Zeros
  • Squares Of Numbers Ending In 1
  • Squares Of Numbers Ending In 5
  • Squares Of Numbers Ending In 6
  • Squares Of Numbers Ending In 4
  • Squares Of Numbers Ending In 9
  • Place Wise Addition – Shuddha Method
  • Addition By Ekadhikena Purvena
  • Addition – Using Zero Ending Method
  • Adding Consecutive Number
  • Adding Consecutive Numbers Starting From 1
  • Finding The Sum Of All Odd Numbers Starting From 1
  • Finding The Sum Of All Even Numbers Starting From 2
  • Complements Using Nikhilam Navataha Caramam Dasatah
  • Subtraction By Ekadhikena Purvena
  • Subtraction By Nikhilam Navataha Caramam Dashtaha
  • Starting Complements From The Middle Of The Sum
  • Leaving Complements In The Middle Of The Sum
  • Subtraction Of Similar Digits
  • Complements More Than Once In The Same Sum
  • Multiplication By 9,99,999… Case – 1
  • Multiplication By 9,99,999… Case – 2
  • Multiplication By 9,99,999… Case – 3
  • Multiplication By 101
  • Multiplication By 102
  • Multiplication By 103
  • Multiplication By 1001
    Multiplication By 111
  • Multiplication By 1111
  • Antyayodashke ‘Pi’ – 10 Multiplications
  • Antyayodashke ‘Pi’ – 100 Multiplications

Multiplication By 13
Multiplication By 14
Multiplication By 15
Multiplication By 16
Multiplication By 17
Multiplication By 18
Multiplication By 19
Multiplication By 21

Multiplication Any Three Digit Number – Line Method
Multiplication Any Three Digit Number
Multiplication Any Four Digit Number

Base Multiplication Both The Numbers Are Less Than The Base
Base Multiplication Both The Number Are More Than The Base
Base Multiplication One More & One Less Than The Base Number

Working Base Multiplication Less Then The Base 100
Working Base Multiplication Less Then The Base 1000
Working Base Multiplication Less Then The Base 10000

Square Of Number Less Than The Base
Square Of Number More Than The Base
Square Of Numbers When The Surplus Or Deficit Is A Very Large Value From Nearest Base
Squares Of Numbers Near 50, 500, 5000 …

Division By Nine Nikhilam Method
Division By Single Digit Divisor-Eight
Division By Single Digit Divisor-Seven
Division By Single Digit Divisor-Six
Division By Numbers Less Than The Base

Navashesha- Computation
Navashesha-Check For Addition
Navashesha-Check For Subtraction
Navashesha-Check For Multiplication
Navashesha-Check For Division

Sum Of Products Single Digit Multiplier
Sum Of Products Two Digit Multiplier
Sum Of Products Three Digit Multiplier
Sum Of Products Four Digit Multiplier

  • Divisibility By 2
  • Divisibility By 3
  • Divisibility By 4
  • Divisibility By 5
  • Divisibility By 6
  • Divisibility By 7
  • Divisibility By 8
  • Divisibility By 9
  • Divisibility By 11
  • Divisibility By 7 Ekadhika
  • Divisibility By 13 Ekadhika
  • Divisibility Test For Divisor Ending In 9
  • Divisibility Test For Divisor Ending In 3
  • Divisibility Test For Divisor Ending In 1
  • Divisibility Test For Divisor Ending In 7
  • Multiplication – Five Digit Number
  • Multiplication – Eight Digit Number
  • Multiplication – Moving Multiplier

Duplex / Dwandwa Yoga
Square Of Any Two Digit Number
Square Of Any Three Digit Number
Square Of Any Four Digit Number
Square Of Any Five Digit Number

Multiplication Of Two Numbers – Difference Is 1
Multiplication Of Two Numbers – Difference Is 2
Multiplication Of Two Numbers – Difference Is 3
Multiplication Of Two Numbers – Difference Is 4

Cubes – Using Anurupyena
Cubes- Numbers More Than The Base
Cubes Numbers Less Than The Base
Cubes Numbers – Working Base

Square Root Of Exact Square
Cube Root Of Exact Cubes Up To 6 Digits
Cube Root Of Exact Cubes 7 – 10 Digits

Division – Paravartya Yojayet
Division – Paravartya Yojayet – Case 2
Straight Division – Dwajanka
Division – Dwajanka- Alternate Remainder
Division – Dwajanka- Has More Digits Than The Main Divisor

Normal To Vinculum Conversion
Vinculum To Normal Conversion
Vinculum Subtraction
Simultaneous Addition & Subtraction

  • Left To Right Addition
    Left To Right Subtraction
    Left To Right Multiplication

Vinculum-Multiplication
Vinculum-Division

Multiplication Using Average
Group Multiplication
Series Multiplication
Series Multiplication – Near To Base
Series Multiplication – Near To Working Base

Decimals – Addition Of Decimal Numbers
Decimals – Subtraction Of Decimal Numbers
Multiplication Of Decimal Numbers
Division – With Decimal Points And Decimal Division

Fractions – Addition And Subtraction Of Fractions
Adding Using Vertically And Crosswise With Coprime Denominators
Vertically And Crosswise For Non-Coprime Denominators
Comparing Fractions
Multiplying Fractions
Dividing By A Fraction
Mixed Practice

Proportion – Solving Ratio Equations
Problems In Direct Proportion
Problems In Indirect Proportion
Dividing The Quantity In A Given Ratio

Aryabhatta’s Method Of Finding The Square Root
Square Roots By Dwandwa Yoga (Duplex) Method
Cube Root-Division Method

Averages – Using Module To Find The Average
Percentages
Percentage Increase
Percentage Reductions

HCF-Vilokanam
HCF-Using Lopana Sthapanbhyam (Elimination And Retention)
LCM By Vertically And Crosswise
LCM Using Anurupyena ( Proportionately)
LCM – Using Vyasti Samstih (Specific And General)

Simple Equation Solving Equation By Transpose And Adjust
Simple Equation First Principles
Type 1 : If The Equation Is In The Form Of Ax + B = Cx + D
Type 2 : If The Equation Is In The Form Of (X+A) (X+B) = (X+C) (X+D)
Type 3 : If The Equation Is In The Form Of
Type 4 : If The Equation Is In The Form Of
Solving Simultaneous Equations

The Products Of Sum And Differences
Sum/Products Of Squares – Dwandwa Yoga
Sum/Products Of Squares – Nikhilam
Multiplication With Squares Of A Number
Sum Or Difference Of Cubes
Product With Cubes Of Two Digit Number
Division Of Sums
Division Of Products
Division Of Sums Of Products
Division Of Product Of Sums
Division Of Squares And Cubes
Square Roots Of Sum Or Product Of Numbers
Square Roots Of Sums Of Squares

Improves Calculation Speed 15 times faster...

Call to Know More:

8748886600

Trainer

Mr. Vinuthan S, a Mechanical Engineer from AIT Chikkamagalur. His passion towards education field initiated the journey in 2001 since then he has been into various segments of education.
In 2011 he founded VASISTA Eduventures focusing on After School Kids Education. He researches in Indian Ancient Knowledge. He has pioneered with the programs like Vedic Maths and Tarka Shastra. He has been teaching Vedic Maths since 10 years, conducted many workshops trained around 750+ teachers, 10000+ students. Under his able mentoring many individuals largely women have been empowered , to be successful entrepreneurs through franchise network.

Don't Wait for Opportunity. Create it.